Airmodus > Publications

Peer-reviewed articles reporting measurements with Airmodus nCNC, PSM and CPC

New

Snapshots of wintertime urban aerosol characteristics: Local sources emphasized in ultrafine particle number and lung deposited surface area
Lepistö, T., Barreira, L. M. F., Helin, A., Niemi, J. V., Kuittinen, N., Lintusaari, H., Silvonen, V., Markkula, L., Manninen, H. E., Timonen, H., Jalava, P., Saarikoski, S., Rönkkö, T.
Environ. Res., Vol 231, Part 1, 116068. 2023. https://doi.org/10.1016/j.envres.2023.116068

Novel aerosol diluter – Size dependent characterization down to 1 nm particle size
Lampimäki, M., Baalbaki, R., Ahonen, L., Korhonen, F., Cai, R., Chan, T., Stolzenburg, D., Petäjä, T., Kangasluoma, J., Vanhanen, J., Lehtipalo, K.
J.Aerosol Sci., Available online 5 April 2023, 106180 https://doi.org/10.1016/j.jaerosci.2023.106180

Improved Counting Statistics of an Ultrafine DMPS System
Stolzenburg, D., Laurila, T., Aalto, P., Vanhanen, J., Petäjä, T., Kangasluoma, J.
Atmos Meas Tech Discuss, in review, 2022. https://doi.org/10.5194/amt-2022-270

Particle number, mass, and black carbon emissions from fuel-operated auxiliary heaters in real vehicle use
Oikarinen, H,, Olin, , Martikainen, S., Leinonen, V., Mikkonen, S., Karjalainen, P.
Atmos Environ: X, Vol 16, 2022. https://doi.org/10.1016/j.aeaoa.2022.100189

Hygroscopicity and CCN potential of DMS-derived aerosol particles
Rosati, B., Isokääntä, S., Christiansen, S., Jensen, M. M., Moosakutty, S. P., Wollesen de Jonge, R., Massling, A., Glasius, M., Elm, J., Virtanen, A., and Bilde, M.
Atmos. Chem. Phys., 22, 13449–13466, 2022. https://doi.org/10.5194/acp-22-13449-2022

Black carbon toxicity dependence on particle coating: Measurements with a novel cell exposure method
Hakkarainen, H., Salo, L., Mikkonen, S., Saarikoski, S., Aurela, M., Teinilä, K., Ihalainen, M., Martikainen, S., Marjanen, P., Lepistö, T., Kuittinen, N., Saarnio, K., Aakko-Saksa, P., Pfeiffer, T. V., Timonen, H., Rönkkö, T., Jalava, P. I.
Sci. Total Environ, Vol 838, Part 4, 2022. https://doi.org/10.1016/j.scitotenv.2022.156543

Factors that govern sub-3 nm particle measurements in an Airmodus® PSM and a TSI® DEG–SMPS
Liu, Y., Attoui, M., Li, Y., Chen, J., Li, Q., Wang, L.
Aerosol Sci Tech, Vol 56, Issue 10, 2022https://doi.org/10.1080/02786826.2022.2098686

Experimental and numerical analysis of fine particle and soot formation in a modern 100 MW pulverized biomass heating plant
Niemelä, N. P.,  Mylläri, F., Kuittinen, N., Aurela, M., Helin, A., Kuula, J., Teinilä, K., Nikka, M., Vainio, O., Arffman, A., Lintusaari, H., Timonen, H., Rönkkö, T., Joronen, T.
Combustion and Flame, Volume 240, 111960, 2022. https://doi.org/10.1016/j.combustflame.2021.111960

Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
Wang, M., Xiao, M., Bertozzi, B., Marie, G., Rörup, B., Schulze, B., Bardakov, R., He, X.-C., Shen, J., Scholz, W., Marten, R., Dada, L., Baalbaki, R., Lopez, B., Lamkaddam, H., Manninen, H. E., Amorim, A., Ataei, F., Bogert, P., Brasseur, Z., Caudillo, L., De Menezes, L.-P., Duplissy, J., Ekman, A. M. L., Finkenzeller, H., Gonzalez Carracedo, L. Granzin, M., Guida, R., Heinritzi, M., Hofbauer, V., Höhler, K., Korhonen, K., Krechmer, J. E., Kürten, A., Lehtipalo, K., Mahfouz, N. G. A., Makhmutov, V., Massabò, D., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Petäjä, T., Philippov, M., Piedehierro, A. A., Pozzer, A., Ranjithkumar, A., Schervish, M., Schobesberger, S., Simon, M., Stozhkov, Y., Tomé, A., Silas Umo, N,, Vogel, F., Wagner, R., Wang, D. S., Weber, S. K., Welti, A., Wu, Y., Zauner-Wieczorek, M., Sipilä, M., Winkler, P. M., Hansel, A., Baltensperger, U., Kulmala, M., Flagan, R. C., Curtius, J., Riipinen, I., Gordon, H., Lelieveld, J., El-Haddad, I., Volkamer, R., Worsnop, D. R. Christoudias, T., Kirkby, J., Möhler O., Donahue, N. M.
Nature 605, 483–489, 2022. https://doi.org/10.1038/s41586-022-04605-4

Reproducibility of the 10-nm Solid Particle Number Methodology for Light-Duty Vehicles Exhaust Measurements
Lähde, T, Giechaskiel, B., Martini, G., Woodburn, J., Bielaczyc, P., Schreiber, D., Huber, M., Dimopoulos Eggenschwiler, P., Fittavolini, C., Florio, S., Pellegrini, L., Schuster, N., Kirchner, U., Yamada, H., Momique, J.-C., Monier, R., Lai, Y., Murtonen, T., Vanhanen, J., Mamakos, A., Dardiotis, C., Otsuki, Y., Spielvogel, J.
Atmosphere. 13, no. 6, 872, 2022. https://doi.org/10.3390/atmos13060872

New particle formation in coastal New Zealand with a focus on open-ocean air masses
Peltola, M., Rose, C., Trueblood, J. V., Gray, S., Harvey, M., and Sellegri, K.
Atmos Chem Phys, 22, 6231–6254, 2022 https://doi.org/10.5194/acp-22-6231-2022

Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests
Junninen, H., Ahonen, L., Bianchi, F., Quéléver, L., Schallhart, S., Dada, L., Manninen, H. E., Leino, K., Lampilahti, J., Buenrostro Mazon, S., Rantala, P., Räty, M., Kontkanen, J., Negri, S., Aliaga, D., Garmash, O., Alekseychik, P., Lipp, H., Tamme, K., Levula, J., Sipilä, M., Ehn, M., Worsnop, D., Zilitinkevich, S., Mammarella, I., Rinne, J., Vesala, T., Petäjä, T., Kerminen, V.-M., Kulmala, M.
Commun Earth Environ3, 93, 2022. https://doi.org/10.1038/s43247-022-00406-9

Instrument characterization

Particle Size Magnifier for Nano-CN Detection
Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., Petäjä, T. and Kulmala, M.
Aerosol Sci. Technol., 45: 4, 533-542, 2011

 

Novel aerosol diluter – Size dependent characterization down to 1 nm particle size
Lampimäki, M., Baalbaki, R., Ahonen, L., Korhonen, F., Cai, R., Chan, T., Stolzenburg, D., Petäjä, T., Kangasluoma, J., Vanhanen, J., Lehtipalo, K.
J.Aerosol Sci., Available online 5 April 2023, 106180 https://doi.org/10.1016/j.jaerosci.2023.106180

Factors that govern sub-3 nm particle measurements in an Airmodus® PSM and a TSI® DEG–SMPS
Liu, Y., Attoui, M., Li, Y., Chen, J., Li, Q., Wang, L.
Aerosol Sci Tech, Vol 56, Issue 10, 2022https://doi.org/10.1080/02786826.2022.2098686

Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions
Rörup, , Scholz, W., Dada, L., Leiminger, M., Baalbaki, R., Hansel, A., Kangasluoma, J., Manninen, H.E., Steiner, G., Vanhanen, J., Kulmala, M., Lehtipalo, K.
J.Aerosol Sci., Volume 161, 105945, 2022. https://doi.org/10.1016/j.jaerosci.2021.105945

Size resolution of the Airmodus A10 particle size magnifier with purified clusters
de la Mora, J. F., Kangasluoma, J., Attoui, M.
J. Aerosol Sci. Volume 160, 105916, 2022. https://doi.org/10.1016/j.jaerosci.2021.105916

Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions
Kangasluoma, J., Cai, R., Jiang, J., Deng, C., Stolzenburg, D., Ahonen, L. R., Chan, T., Fu, Y., Kim, C., Laurila, T. M., Zhou, Y., Dada, L., Sulo, J., Flagan, R. C., Kulmala, M., Petäjä, T., Lehtipalo, K.
J. Aerosol Sci. Vol 148, 105584, 2020. https://doi.org/10.1016/j.jaerosci.2020.105584

Counting on Chemistry: Laboratory Evaluation of Seed Material-Dependent Detection Efficiencies of Ultrafine Condensation Particle Counters
Wlasits, P. J., Stolzenburg, D., Tauber, C., Brilke, S., Schmitt, S. H., Winkler, P. M., and Wimmer, D.
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-486, in review, 2020.

Precision characterization of three ultrafine condensation particle counters using singly charged salt clusters in the 1-4 nm size range generated by a bipolar electrospray source
Brilke, S., Resch, J., Leiminger, M., Steiner, G., Tauber, C., Wlasits, P. J., Winkler, P. M.
Aerosol Sci. Technol. Accepted author version published online December 23, 2019. https://doi.org/10.1080/02786826.2019.1708260

Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles
Cai, R., Jiang, J., Mirme, S., Kangasluoma, J.
J. Aerosol Sci. Vol. 127, pp. 102-115, 2019. https://doi.org/10.1016/j.jaerosci.2018.11.002

On the time response determination of condensation particle counters
Enroth, J., Kangasluoma, J., Korhonen, F., Hering, S., Picard, D., Lewis G., Attoui, M., Petäjä, T.
Aerosol Sci. Technol. Published online April 19, 2018. https://doi.org/10.1080/02786826.2018.1460458

On the sources of uncertainty in the sub-3 nm particle concentration measurement
Kangasluoma, J., Kontkanen, J.
J. Aerosol Sci. Vol 112, pp. 34-51, 2017. https://doi.org/10.1016/j.jaerosci.2017.07.002

Operation of the Airmodus A11 nanoCondensation Nucleus Counter at various inlet pressures, various operation temperatures and design of a new inlet system
Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen, M. Attoui, J. Mikkilä, K. Lehtipalo, J. Vanhanen, M. Kulmala, T. Petäjä.
Atmos. Meas. Tech., 9, 2977-2988, 2016
 (Atmos. Meas. Tech. Discuss., 8, 8483–8508, 2015)

Sizing of neutral sub 3 nm tungsten oxide clusters using Airmodus Particle Size Magnifier
Kangasluoma, J., Attoui, M., Junninen, H., Lehtipalo, K., Samodurov, A., Korhonen, F., Sarnela, N., Schmidt-Ott, A., Worsnop, D., Kulmala, M., Petäjä, T.
Journal of Aerosol Science, vol 87, 53-62, 2015.

Sub-3 nm particle size and composition dependent response of a nano-CPC battery
Kangasluoma, J., Kuang, C., Wimmer, D., Rissanen, M. P., Lehtipalo, K., Ehn, M., Worsnop, D. R., Wang, J., Kulmala, M., and Petäjä, T.
Atmos. Meas. Tech., 7, 689-700, 2014 (Atmos. Meas. Tech. Discuss., 6, 8855-8887, doi:10.5194/amtd-6-8855-2013, 2013.)

Performance of diethylene glycol-based particle counters in the sub-3 nm size range
Wimmer, D., Lehtipalo, K., Franchin, A., Kangasluoma, J., Kreissl, F., Kürten, A., Kupc, A., Metzger, A., Mikkilä, J., Petäjä, T., Riccobono, F., Vanhanen, J., Kulmala, M., and Curtius, J.
Atmos. Meas. Tech., 6, 1793-1804, doi:10.5194/amt-6-1793-2013, 2013.

Atmospheric

Snapshots of wintertime urban aerosol characteristics: Local sources emphasized in ultrafine particle number and lung deposited surface area
Lepistö, T., Barreira, L. M. F., Helin, A., Niemi, J. V., Kuittinen, N., Lintusaari, H., Silvonen, V., Markkula, L., Manninen, H. E., Timonen, H., Jalava, P., Saarikoski, S., Rönkkö, T.
Environ. Res., Vol 231, Part 1, 116068. 2023. https://doi.org/10.1016/j.envres.2023.116068

Hygroscopicity and CCN potential of DMS-derived aerosol particles
Rosati, B., Isokääntä, S., Christiansen, S., Jensen, M. M., Moosakutty, S. P., Wollesen de Jonge, R., Massling, A., Glasius, M., Elm, J., Virtanen, A., and Bilde, M.
Atmos. Chem. Phys., 22, 13449–13466, 2022. https://doi.org/10.5194/acp-22-13449-2022

Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
Wang, M., Xiao, M., Bertozzi, B., Marie, G., Rörup, B., Schulze, B., Bardakov, R., He, X.-C., Shen, J., Scholz, W., Marten, R., Dada, L., Baalbaki, R., Lopez, B., Lamkaddam, H., Manninen, H. E., Amorim, A., Ataei, F., Bogert, P., Brasseur, Z., Caudillo, L., De Menezes, L.-P., Duplissy, J., Ekman, A. M. L., Finkenzeller, H., Gonzalez Carracedo, L. Granzin, M., Guida, R., Heinritzi, M., Hofbauer, V., Höhler, K., Korhonen, K., Krechmer, J. E., Kürten, A., Lehtipalo, K., Mahfouz, N. G. A., Makhmutov, V., Massabò, D., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Petäjä, T., Philippov, M., Piedehierro, A. A., Pozzer, A., Ranjithkumar, A., Schervish, M., Schobesberger, S., Simon, M., Stozhkov, Y., Tomé, A., Silas Umo, N,, Vogel, F., Wagner, R., Wang, D. S., Weber, S. K., Welti, A., Wu, Y., Zauner-Wieczorek, M., Sipilä, M., Winkler, P. M., Hansel, A., Baltensperger, U., Kulmala, M., Flagan, R. C., Curtius, J., Riipinen, I., Gordon, H., Lelieveld, J., El-Haddad, I., Volkamer, R., Worsnop, D. R. Christoudias, T., Kirkby, J., Möhler O., Donahue, N. M.
Nature 605, 483–489, 2022. https://doi.org/10.1038/s41586-022-04605-4

New particle formation in coastal New Zealand with a focus on open-ocean air masses
Peltola, M., Rose, C., Trueblood, J. V., Gray, S., Harvey, M., and Sellegri, K.
Atmos ChemPhys, 22, 6231–6254, 2022 https://doi.org/10.5194/acp-22-6231-2022

Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests
Junninen, H., Ahonen, L., Bianchi, F., Quéléver, L., Schallhart, S., Dada, L., Manninen, H. E., Leino, K., Lampilahti, J., Buenrostro Mazon, S., Rantala, P., Räty, M., Kontkanen, J., Negri, S., Aliaga, D., Garmash, O., Alekseychik, P., Lipp, H., Tamme, K., Levula, J., Sipilä, M., Ehn, M., Worsnop, D., Zilitinkevich, S., Mammarella, I., Rinne, J., Vesala, T., Petäjä, T., Kerminen, V.-M., Kulmala, M.
Commun Earth Environ3, 93, 2022. https://doi.org/10.1038/s43247-022-00406-9

Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters Kulmala, M., Stolzenburg, D., Dada, L., Cai, R., Kontkanen, J., Yan, C., Kangasluoma, J., Ahonen, L. R., Gonzalez-Carracedo, L., Sulo, J., Tuovinen, S., Deng, C., Li, Y., Lehtipalo K., Lehtinen, K. E. J., Petäjä, T., Winkler, P. M., Jiang, J., Kerminen, V.-M. J. Aerosol Sci. Vol. 159, 105878, 2022. https://doi.org/10.1016/j.jaerosci.2021.105878

Zeppelin-led study on the onset of new particle formation in the planetary boundary layer
Lampilahti, J., Manninen, H. E., Nieminen, T., Mirme, S., Ehn, M., Pullinen, I., Leino, K., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Järvinen, E., Väänänen, R., Yli-Juuti, T., Krejci, R., Lehtipalo, K., Levula, J., Mirme, A., Decesari, S., Tillmann, R., Worsnop, D. R., Rohrer, F., Kiendler-Scharr, A., Petäjä, T., Kerminen, V.-M., Mentel, T. F., Kulmala, M.
Atmos. Chem. Phys., 21, 12649–12663, 2021. https://doi.org/10.5194/acp-21-12649-2021

Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison
Okuljar, M., Kuuluvainen, H., Kontkanen, J., Garmash, O., Olin, M., Niemi, J. V., Timonen, H., Kangasluoma, J., Jun Tham, Y. Baalbaki, R., Sipilä, M., Salo, L., Lintusaari, H., Portin, H., Teinilä, K., Aurela, M., Dal Maso, M., Rönkkö, T., Petäjä, T., Paasonen, P.
Atmos. Chem. Phys., 21, 9931–9953, 2021 ,https://doi.org/10.5194/acp-21-9931-2021

Observation of sub-3nm particles and new particle formation at an urban location in India
Sebastian, M., Kanawade, V. P., Pierce, J. R.
Atmos. Env.
Vol. 256, 118460, 2021. https://doi.org/10.1016/j.atmosenv.2021.118460

Towards understanding the characteristics of new particle formation in the Eastern Mediterranean
Baalbaki, R., Pikridas, M., Jokinen, T., Laurila, T., Dada, L., Bezantakos, S., Ahonen, L., Neitola, K., Maisser, A., Bimenyimana, E., Christodoulou, A., Unga, F., Savvides, C., Lehtipalo, K., Kangasluoma, J., Biskos, G., Petäjä, T., Kerminen, V.-M., Sciare, J., Kulmala, M.
Atmos. Chem. Phys., 21, 9223–9251, 2021 https://doi.org/10.5194/acp-21-9223-2021

The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing
Yan, C., Yin, R., Lu, Y., Dada, L., Yang, D., Fu, Y., Kontkanen, J., Deng, C., Garmash, O., Ruan, J., Baalbaki, R., Schervish, M., Cai, R., Bloss, M., Chan, T., Chen, T., Chen, Q., Chen, X., Chen, Y., Chu, B., Dällenbach, K., Foreback, B., He, X., Heikkinen, L., Jokinen, T., Junninen, H., Kangasluoma, J., Kokkonen, T., Kurppa, M., Lehtipalo, K., Li, H., Li, H., Li, X., Liu, Y., Ma, Q., Paasonen, P., Rantala, P., Pileci, R. E., Rusanen, A., Sarnela, N., Simonen, P., Wang, S., Wang, W., Wang, Y., Xue, M., Yang, G., Yao, L., Zhou, Y., Kujansuu, J., Petäjä, T., Nie, W., Ma, Y., Ge, M., He, H., Donahue, N. M., Worsnop, D. R., Kerminen, V.-M., Wang, L., Liu, Y., Zheng, J., Kulmala, M., Jiang, J., Bianchini, F.
Geophys. Res. Lett., 48, 7, 2021. e2020GL091944 https://doi.org/10.1029/2020GL091944

Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China
Chu, B., Dada, L., Liu, Y., Yao, L., Wang, Y., Du, W., Cai, J., Dällenbach, K. R., Chen, X., Simonen, P., Zhou, Y., Deng, C., Fu, Y.. Yin, R., Li, H., He, X.-C., Feng, Z., Yan, C., Kulmala, M.
Sci. Total Environ. 753, 142207, 2021. https://doi.org/10.1016/j.scitotenv.2020.142207

Long-term measurement of sub-3nm particles and their precursor gases in the boreal forest
Sulo, J., Sarnela, N., Kontkanen, J., Ahonen, L., Paasonen, P., Laurila, T., Jokinen, T., Kangasluoma, J., Petäjä, T., Kulmala, M., Lehtipalo, K.
Atmos. Chem. Phys., 21, 695–715, 2021. https://doi.org/10.5194/acp-21-695-2021

Molecular insights into new particle formation in Barcelona, Spain
Brean, J., Beddows, D. C. S., Shi, Z., Temime-Roussel, B., Marchand, N., Querol, X., Alastuey, A., Cruz Minguillón, M., Harrison, R. M.
Atmos. Chem. Phys., 20, 10029–10045, 2020. https://doi.org/10.5194/acp-20-10029-2020

Size-dependent influence of NOx on the growth rates of organic aerosol particles
Yan, C., Nie, W., Vogel, A. L., Dada, L., Lehtipalo, K., Stolzenburg, D., Wagner, R., Rissanen, M. P., Xiao, M., Ahonen, L., Fischer, L., Rose, C., Bianchi, F., Gordon, H., Simon, M., Heinritzi, M., Garmash, O., Roldin, P., Dias, A., Ye, P., Hofbauer, V., Amorim, A., Bauer, P. S., Bergen, A., Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Buchholz, A., Buenrostro Mazon, S., Canagaratna, M. R., Chen, X., Ding, A., Dommen, J., Draper, D. C., Duplissy, J., Frege, C., Heyn, C., Guida, R., Hakala, J., Heikkinen, L., Hoyle, C. R., Jokinen, T., Kangasluoma, J., Kirkby, J., Kontkanen, J., Kürten, A., Lawler, M. J., Mai, H., Mathot, S., Mauldin III, R. L., Molteni, U., Nichman, L., Nieminen, T., Nowak, J., Ojdanic, A., Onnela, A., Pajunoja, A., Petäjä, T., Piel, F., Quéléver, L. L. J., Sarnela, N., Schallhart, S., Sengupta, K., Sipilä, M., Tomé, A., Tröstl, J., Väisänen, O., Wagner, A. C., Ylisirniö, A., Zha, Q., Baltensperger, U., Carslaw, K. S., Curtius, J., Flagan, R. C., Hansel, A., Riipinen, I., Smith, J. N., Virtanen, A., Winkler, P. M., Donahue, N. M., Kerminen, V.-M., Kulmala, M., Ehn, M., Worsnop, D. R.
Sci. Adv. Vol. 6, no. 22, eaay4945, 2020, DOI: 10.1126/sciadv.aay4945

Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H. E., Amanatidis, S., Amorim, A., Baalbaki, R., Baccarini, A., Bell, D. M., Bertozzi, B., Bräkling, S., Brilke, S., Caudillo Murillo, L., Chiu, R., Chu, B., De Menezes, L.-P., Duplissy, J., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampimäki, M., Lee, C. P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Partoll, E., Petäjä, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Rörup, B., Scholz, W., Shen, J., Simon, M., Sipilä, M., Steiner, G., Stolzenburg, D., Tham, Y. J., Tomé, A., Wagner, A. C., Wang, D. S., Wang, Y., Weber, S. K., Winkler, P. M., Wlasits, P. J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D. R., Kirkby, J., Seinfeld, J. H., El-Haddad, I., Flagan, R. C., Donahue, N. M.
Nature 581, pp. 184–189, 2020. https://doi.org/10.1038/s41586-020-2270-4

Formation of Nighttime Sulfuric Acid from the Ozonolysis of Alkenes in Beijing
Guo, Y., Yan, C., Li, C., Feng, Z., Zhou, Y., Lin, Z., Dada, L., Stolzenburg, D., Yin, R., Kontkanen, J., Daellenbach, K. R., Kangasluoma, J., Yao, L., Chu, B., Wang, Y., Cai, R., Bianchi, F., Liu, Y., and Kulmala, M.
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1111, in review, 2020.

Roll vortices induce new particle formation bursts in the planetary boundary layer
Lampilahti, J., Manninen, H. E., Leino, K., Väänänen, R., Manninen, A., Buenrostro Mazon, S., Nieminen, T., Leskinen, M., Enroth, J., Bister, M., Zilitinkevich, S., Kangasluoma, J., Järvinen, H., Kerminen, V.-M., Petäjä, T., and Kulmala, M.
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1013, in review, 2020.

Molecular understanding of the suppression of new-particle formation by isoprene
Heinritzi, M., Dada, L., Simon, M., Stolzenburg, D., Wagner, A. C., Fischer, L., Ahonen, L. R., Amanatidis, S., Baalbaki, R., Baccarini, A., Bauer, P. S., Baumgartner, B., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Dommen, J., Duplissy, J., Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., Granzin, M., Haddad, I. E., He, X., Helm, J., Hofbauer, V., Hoyle, C. R., Kangasluoma, J., Keber, T., Kim, C., Kürten, A., Lamkaddam, H., Lampilahti, J., Laurila, T. M., Lee, C. P., Lehtipalo, K., Leiminger, M., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Mentler, B., Molteni, U., Müller, T., Nie, W., Nieminen, T., Onnela, A., Partoll, E., Passananti, M., Petäjä, T., Pfeifer, J., Pospisilova, V., Quéléver, L., Rissanen, M. P., Rose, C., Schobesberger, S., Scholz, W., Scholze, K., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Vazquez-Pufleau, M., Virtanen, A., Vogel, A. L., Volkamer, R., Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Zhou, X., Amorim, A., Baltensperger, U., Hansel, A., Kulmala, M., Tomé, A., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-51, in review, 2020.

Formation and growth of sub-3-nm aerosol particles in experimental chambers
Dada, L., Lehtipalo, K., Kontkanen, J., Nieminen, T., Baalbaki, R., Ahonen, L., Duplissy, J., Yan, C., Chu, B., Petäjä, T., Lehtinen, K., Kerminen, V.-M., Kulmala, M., Kangasluoma, J.
Nature Protocols 15, pp. 1013–1040, 2020.

The Aarhus Chamber Campaign on Highly Oxidized Multifunctional Organic Molecules and Aerosols (ACCHA): Particle Formation and Detailed Chemical Composition at Different Temperatures
Kristensen, K., Jensen, L. N., Quéléver, L. L. J., Christiansen, S., Rosati, B., Elm, J., Teiwes, R., Pedersen, H. B., Glasius, M., Ehn, M., and Bilde, M.
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-99, in review, 2020.

Molecular understanding of new-particle formation from alpha-pinene between -50 °C and 25 °C
Simon, M, Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A. C., Kürten, A., Rörup, B., He, X.-C., Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P. S., Beck, L., Bergen, A., Bianchi, F., Bräkling, S., Brilke, S., Caudillo, L., Chen, D., Chu, B., Dias, A., Draper, D. C., Duplissy, J., El Haddad, I., Finkenzeller, H., Frege, C., GonzalezCarracedo, L., Gordon, H., Granzin, M., Hakala, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kong, W., Lamkaddam, H.,  Lee, C. P., Lehtipalo, K., Leiminger, M., Mai, H., Manninen, H. E., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela. A., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Quéléver, L. L. J., Ranjithkumar, A., Rissanen, M., Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A. R., Vazquez-Pufleau, M., Vogel, A., Wagner, R., Wang, M., Wang, D. S., Wang, Y., Weber, S. K., Wu, Y., Xiao, M., Yan, C., Ye, P., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Baltensperger, U., Dommen, J., Flagan, R. C., Hansel, A., Kulmala, M., Volkamer, R., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., Curtius, J.
Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2019-1058, in review, 2020.

Traffic-originated nanocluster emission exceeds H2SO4-driven photochemical new particle formation in an urban area
Olin, M., Kuuluvainen, H., Aurela, M., Kalliokoski, J., Kuittinen, N., Isotalo, M., Timonen, H. J., Niemi, J. V., Rönkkö, T., and Dal Maso, M.
Atmos. Chem. Phys., 20, 1–13, https://doi.org/10.5194/acp-20-1-2020, 2020.

New Particle Formation and Sub-10 nm Size Distribution Measurements during the A-LIFE field experiment in Paphos, Cyprus
Brilke, S., Fölker, N., Müller, T., Kandler, K., Gong, X., Peischl, J., Weinzierl, B., Winkler, P. M.
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1123, in review, 2019.

Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing
Brean, J., Harrison, R. M., Shi, Z., Beddows, D. C. S., Acton, W. J. F., Hewitt, C. N., Squires, F. A., Lee, J.
Atmos. Chem. Phys., vol. 19, issue 23, pp. 14933–14947, 2019. https://doi.org/10.5194/acp-19-14933-2019

Relating high ozone, ultrafine particles, and new particle formation episodes using cluster analysis
Carnerero, C., Pérez, N., Petäjä, T., Laurila, T. M., Ahonen, L. R., Kontkanen, J., Ahn, K.-H., Alastuey, A., Querol, X.
Atmos. Environ.: X Vol. 4, 2019. https://doi.org/10.1016/j.aeaoa.2019.100051 

Enhanced growth rate of atmospheric particles from sulfuric acid
Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H., Nieminen, T., Pichelstorfer, L., He, X.-C., Brilke, S., Xiao, M., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bräkling, S., Caudillo Murillo, L., Chen, D., Chu, B., Dada, L., Dias, A., Dommen, J., Duplissy, J., El Haddad, I., Finkenzeller, H., Fischer, L., Gonzalez Carracedo, L., Heinritzi, M., Kim, C., Koenig, T. K., Kong, W., Lamkaddam, H., Lee, C. P., Leiminger, M., Li, Z., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Müller, T., Nie, W., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Rissanen, M. P., Rörup, B., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-Pufleau, M., Wagner, A. C., Wang, M., Wang, Y., Weber, S. K., Wimmer, D., Wlasits, P. J., Wu, Y., Ye, Q., Zauner-Wieczorek, M., Baltensperger, U., Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R. C., Hansel, A., Kulmala, M., Volkamer, R., Kirkby, J., Winkler, P. M.
Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2019-755, in review, 2019.

New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., Zhang, R.
J. Geophys. Res.: Atmos., vol. 124, issue 13, pp. 7098–7146, 2019. https://doi.org/10.1029/2018JD029356

Dispersion of a Traffic Related Nanocluster Aerosol Near a Major Road Kangasniemi, O., Kuuluvainen, H., Heikkilä, J., PirjolaL., Niemi, J. V., Timonen, H., Saarikoski, S., Rönkkö, T., Dal Maso, M. Atmosphere 2019, 10, 309. doi:10.3390/atmos10060309

Variation of size-segregated particle number concentrations in wintertime Beijing
Zhou, Y., Dada, L., Liu, Y., Fu, Y., Kangasluoma, J., Chan, T., Yan, C., Chu, B., Daellenbach, K. R., Bianchi, F., Kokkonen, T., Liu, Y., Kujansuu, J., Kerminen, V.-M., Petäjä, T., Wang, L., Jiang, J., Kulmala, M.
Atmos. Chem. Phys., 20, 1201–1216, https://doi.org/10.5194/acp-20-1201-2020, 2020.  

(Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-60, in review, 2019.)

Temperature Effects on Sulfuric Acid Aerosol Nucleation and Growth: Initial Results from the TANGENT Study
Tiszenkel, L., Stangl, C., Krasnomowitz, J., Ouyang, Q., Yu, h., Apsokardu, M. J., Johnston, M. V., Lee, S.-H.
Atmos. Chem. Phys., 19, 8915–8929, https://doi.org/10.5194/acp-19-8915-2019, 2019.

(Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-3, in review, 2019.)

Vertical profiles of sub-3 nm particles over the boreal forest
Leino, K., Lampilahti, J., Poutanen, P., Väänänen, R., Manninen, A., Buenrostro Mazon, S., Dada, L., Nikandrova, A., Wimmer, D., Aalto, P. P., Ahonen, L. R., Enroth, J., Kangasluoma, J., Keronen, P., Korhonen, F., Laakso, H., Matilainen, T., Siivola, E., Manninen, H. E., Lehtipalo, K., Kerminen, V.-M., Petäjä, T., Kulmala, M.
Atmos. Chem. Phys., 19, 4127-4138, 2019. https://doi.org/10.5194/acp-19-4127-2019

Urban Aerosol Particle Size Characterization in Eastern Mediterranean Conditions
Hussein, T., Dada, L., Hakala, S.,Petäjä, T., Kulmala, M.
Atmosphere 2019, 10(11), 710; https://doi.org/10.3390/atmos10110710

New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations
Sellegri, K., Rose, C., Marinoni, A., Lupi, A., Wiedensohler, A., Andrade, M., Bonasoni, P., Laj P.,
Atmosphere 2019, 10(9), 493; https://doi.org/10.3390/atmos10090493

Laboratory verification of a new high flow differential mobility particle sizer, and field measurements in Hyytiälä
Kangasluoma, J., Ahonen, L. R., Laurila, T. M., Cai, R., Enroth, J., Buenrostro Mazon, S., Korhonen, F., Aalto, P. P., Kulmala, M., Attoui, M., Petäjä, T.
J.Aerosol.Sci. Volume 124, October 2018, Pages 1-9 https://doi.org/10.1016/j.jaerosci.2018.06.009

Number size distribution of atmospheric particles in a suburban Beijing in the summer and winter of 2015
Du, P., Gui, H., Zhang, J., Liu, J., Yu, T., Wang, J., Cheng, Y., Shi, Z.
Atmospheric Environment Volume 186, August 2018, Pages 32-44, https://doi.org/10.1016/j.atmosenv.2018.05.023

Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
Lehtipalo, K. et al.
Sci. Adv. Vol. 4, no. 12, eaau5363, 2018, DOI: 10.1126/sciadv.aau5363

Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica
Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P., Duplissy, E.-M., Junninen, H., Kangasluoma, J., Manninen, H. E., Petäjä, T., Kulmala, M., Worsnop, D. R., Kirkby, J., Virkkula, A., Kerminen, V.-M.
Sci. Adv. Vol. 4, no. 11, eaat9744, 2018, DOI: 10.1126/sciadv.aat9744

Estimating the influence of transport to aerosol size distributions during new particle formation events
Cai, R., Chandra, I., Yang, D., Yao, L., Fu, Y., Li, X., Lu, Y., Luo, L., Hao, J., Ma, Y., Wang, L., Zheng, J., Seto, T., Jiang, J.
Atmos. Chem. Phys., 18, 16587-16599, https://doi.org/10.5194/acp-18-16587-2018, 2018.

Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
Stolzenburg, D. et al.
Proc. Natl. Acad. Sci. U.S.A. Published online August 28, 2018. https://doi.org/10.1073/pnas.1807604115

Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon
Hietikko, R., Kuuluvainen, H., Harrison, R. M., Portin, H., Timonen, H., Niemi, J. V., Rönkkö, T.
Atmos. Environ. Available online 22 June 2018. https://doi.org/10.1016/j.atmosenv.2018.06.031

Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity
Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Buenrostro Mazon, S., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petäjä, T., Worsnop, D. R., Kulmala, M. Wang, L.
Science, vol 361, issue 6399, pp. 278-281, 2018. DOI: 10.1126/science.aao4839

Driving parameters of biogenic volatile organic compounds and consequences on new particle formation observed at an Eastern Mediterranean background site
Debevec, C., Sauvage, S., Gros, V., Sellegri, K., Sciare, J., Pikridas, M., Stavroulas, I., Leonardis, T., Gaudion, V., Depelchin, L., Fronval, I., Sarda-Esteve, R., Baisnée, D., Bonsang, B., Savvides, C., Vrekoussis, M., Locoge, N.
Atmos. Chem. Phys., 18, 14297–14325, https://doi.org/10.5194/acp-18-14297-2018, 2018.

Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2018-297, in review, 2018.

Amines in boreal forest air at SMEAR II station in Finland
Hemmilä, M., Hellén, H., Virkkula, A., Makkonen, U., Praplan, A. P., Kontkanen, J., Ahonen, L., Kulmala, M., Hakola, H.
Atmos. Chem. Phys., 18, 6367-6380, https://doi.org/10.5194/acp-18-6367-2018, 2018.

Experimental study of H2SO4 aerosol nucleation at high ionization levels
Tomicic, M., Enghoff, M. B., Svensmark, H.
Atmos. Chem. Phys. 18, 5921-5930, 2018. https://doi.org/10.5194/acp-18-5921-2018

Vertical and horizontal distribution of regional new particle formation events in Madrid
Carnerero, C., Pérez, N., Reche, C., Ealo, M., Titos, G., Lee, H.-K., Eun, H.-R., Park, Y.-H., Dada, L., Paasonen, P., Kerminen, V.-M., Mantilla, E., Escudero, M., Gómez-Moreno, F. J., Alonso-Blanco, E., Coz, E., Saiz-Lopez, A., Temime-Roussel, B., Marchand, N., Beddows, D. C. S., Harrison, R. M., Petäjä, T., Kulmala, M., Ahn, K.-H., Alastuey, A., Querol, X.
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, 2018.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-173, in review, 2018.

Laboratory study of H2SO4/H2O nucleation using a new technique – a laminar co-flow tube
Trávníčková, T., Škrabalová, L., Havlica, J., Krejčí, P., Hrubý, J., Ždímal, V.
Tellus B Chem. Phys. Meteorol., 70:1, 1-11, 2018. DOI: 10.1080/16000889.2018.1446643

The role of ions in new particle formation in the CLOUD chamber
Wagner, R. et al.
Atmos. Chem. Phys., 17, 15181-15197, https://doi.org/10.5194/acp-17-15181-2017, 2017.

Ground-based observation of clusters and nucleation-mode particles in the Amazon
Wimmer D., Mazon, S. B., Manninen, H. E., Kangasluoma, J., Franchin, A., Nieminen, T., Backmann, J., Wang, J., Kuang, C., Krejci, R., Brito, J., Goncalves Morais F., Martin, S. T., Artaxo, P., Kulmala, M., Kerminen, V.-M., Petäjä, T.
Atmos. Chem. Phys., 18, 13245–13264, https://doi.org/10.5194/acp-18-13245-2018, 2018.

(Direct observation of molecular clusters and nucleation mode particles in the Amazon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-782, in review, 2017.)

Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols
Dall’Osto, M., Ovadnevaite, J., Paglione, M., Beddows, D. C. S., Ceburnis, D., Cree, C., Cortés, P., Zamanillo, M., Nunes, S. O., Pérez, G. L., Ortega-Retuerta, E., Emelianov, M., Vaqué, D., Marrasé, C., Estrada, M., Sala, M. M., Vidal, M., Fitzsimons, M. F., Beale, R., Airs, R., Rinaldi, M., Decesari, S., Facchini, M. C., Harrison, R. M., O’Dowd, C., Simó, R.
Scientific Reports, 7(1), 6047, 2017 https://doi.org/10.1038/s41598-017-06188-x

Traffic is a major source of atmospheric nanocluster aerosol
Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski, S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., Dal Maso, M.
Proc. Natl. Acad. Sci. U.S.A. Published online July 3, 2017. doi:10.1073/pnas.1700830114

Solar eclipse demonstrating the importance of photochemistry in new particle formation
Jokinen, T., Kontkanen, J., Lehtipalo, K., Manninen, H. E., Aalto, J., Porcar-Castell, A., Garmash, O., Nieminen, T., Ehn, M., Kangasluoma, J., Junninen, H., Levula, J., Duplissy, J., Ahonen, L. R., Rantala, P., Heikkinen, L., Yan, C., Sipilä, M., Worsnop, D. R., Bäck, J., Petäjä, T., Kerminen, V.-M., Kulmala, M.
Sci. Rep. 7 45707,2017. doi:10.1038/srep45707

Regional and local new particle formation events observed in the Yangtze River Delta region, China
Dai, L., Wang, H., Zhou, L., An, J., Tang, L., Lu, C., Yan, W., Liu, R., Kong, S., Chen, M., Lee, S., Yu, H.
J. Geophys. Res. Atmos., 122, 2017, doi:10.1002/2016JD026030.

Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles
Yu, H., Dai, L., Zhao, Y., Kanawade, V. P., Tripathi, S. N., Ge, X., Chen, M., Lee, S.
J. Geophys. Res. Atmos., vol. 122, issue 3, pp. 1919-1929, 2017.

Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities
Kontkanen, J., Lehtipalo, K., Ahonen, L., Kangasluoma, J., Manninen, H.E., Hakala, J., Rose, C., Sellegri, K., Xiao, S., Wang, L., Qi, X., Nie, W., Ding, A., Yu, H., Lee, S., Kerminen, V.-M., Petäjä, T., Kulmala, M.
Atmos. Chem. Phys., 17, pp. 2163-2187, 2017

The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water
Arquero, K. D., Gerber, R. B., Finlayson-Pitts, B. J.
Environ. Sci. Technol., available online January 24, 2017, DOI: 10.1021/acs.est.6b05056.

Isoprene suppression of new particle formation: Potential mechanisms and implications
Lee, S.-H., Uin, J., Guenther, A. B., de Gouw, J. A., Yu, F., Nadykto, A. B., Herb, J., Ng, N. L., Koss, A., Brune, W. H., Baumann, K., Kanawade, V. P., Keutsch, F. N., Nenes, A., Olsen, K., Goldstein, A., Ouyang, Q.
Journal of Geophysical Research: Atmospheres, vol 121, 14,621-14,625, 2016.

Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms
Sellegri, K., Pey, J., Rose, C., Culot, A., DeWitt, H. L., Mas, S., Schwier, A. N., Temime-Roussel, B., Charriere, B., Saiz-Lopez, A., Mahajan, A. S., Parin, D., Kukui, A., Sempere, R., D’Anna, B., Marchand, N.
Geophys. Res. Lett., 43, 6596-6603, 2016, doi:10.1002/2016GL069389.

New particle formation in the free troposphere: A question of chemistry and timing
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J, Kürten, A., Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M., Dommen, J., Baltensperger, U.
Science vol. 352, issue 6289, pp. 1109-1112, 2016

Ion-induced nucleation of pure biogenic particles
Kirkby et al.
Nature, vol 533, pp. 521-526, 2016

Tröstl et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature vol. 533, pp. 527-531, 2016

The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
Lehtipalo et al.
Nature Communications 7, 11594, 2016

Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China
Yu, H., Zhou, L., Dai, L., Shen, W., Zheng, J., Ma, Y., Chen, M.
Atmos. Chem. Phys., 16, 2641-2657, 2016.

A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations
Dal Maso, M., Liao, L., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Sipilä, M., Hakala, J., Lehtipalo, K., Ehn, M., Kerminen, V.-M., Kulmala, M., Worsnop, D., Mentel, T.
Atmos. Chem. Phys., 16, 1955-1970, doi:10.5194/acp-16-1955-2016, 2016.

High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign
Kontkanen, J., Järvinen, E., Manninen, H.E., Lehtipalo, K., Kangasluoma, J., Decesari, S., Gobbi, G.P., Laaksonen, A., Petäjä, T., Kulmala, M.
Atmos. Chem. Phys., 16, 1919-1935, 2016

Sulphuric acid and aerosol particle production in the vicinity of an oil refinery
Sarnela, N., Jokinen, T., Nieminen, T., Lehtipalo, K., Junninen, H., Kangasluoma, J., Hakala, J., Taipale, R., Schobesberger, S., Sipilä, M., Larnimaa, K., Westerholm, H., Heijari, J., Kerminen, V.-M., Petäjä, T., Kulmala, M.
Atmos. Env., vol 119, 156-166, 2015.

Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies
Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Mauldin R. L., Sarnela, N., Jokinen T., Lihavainen H., Kulmala, M.
Atmos. Chem. Phys., 15, 3429-3443, 2015. doi:10.5194/acp-15-3429-2015

Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere
Rose, C., Sellegri, K., Asmi, E., Hervo, M., Freney, E., Colomb, A., Junninen, H., Duplissy, J., Sipilä, M., Kontkanen, J., Lehtipalo, K., Kulmala, M.
Atmos. Chem. Phys., 15, 3413-3428, 2015.

Strong atmospheric new particle formation in winter in urban Shanghai, China
Xiao, S. et al.
Atmos. Chem. Phys., 15, 1769-1781, 2015. www.atmos-chem-phys.net/15/1769/2015/ doi:10.5194/acp-15-1769-2015

New particle formation and growth in an isoprene-dominated ozark forest: from sub-5 nm to ccn-active sizes
Yu, H., Ortega, J., Smith, J. N., Guenther, A. B., Kanawade, V. P., You, Y., Liu, Y., Hosman, K., Karl, T., Seco, R., Geron, C., Pallardy, S. G., Gu, L., Mikkilä, J., Lee, S.-H.
Aerosol Sci. Technol. Vol. 48, Issue 12, pp. 1285-1298, 2014.

Effect of addition of four base compounds on sulphuric-acid–water new-particle formation: a laboratory study
Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Lihavainen, H., Kulmala, M.
Boreal Env. Res. 19 (suppl. B): 257–274, 2014.

A large source of low-volatility secondary organic aerosol
Ehn, M. et al.
Nature 506, 476-479, 2014.

Sub-3 nm particles observed at the coastal and continental sites in the United States
Yu, H. , Gannet Hallar , A., You , Y., Sedlacek , A., Springston , S., Kanawade , V.P., Lee , Y-N, Wang , J., Kuang , C., McGraw , R.L., McCubbin , I., Mikkila , J., and Lee, S.-H.
J. Geophys. Res. Atmos., 119, doi:10.1002/ 2013JD020841, 2014.

Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier
Lehtipalo, K., Leppä, J., Kontkanen, J., Kangasluoma, J., Franchin, A., Wimmer, D., Schobesberger, S., Junninen, H., Petäjä, T., Sipilä, M., Mikkilä, J., Vanhanen, J., Worsnop, D. R. & Kulmala, M.
Boreal Env. Res. 19 (suppl. B) 2014.

Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements
Kontkanen, J., Lehtinen, K. E. J., Nieminen, T., Manninen, H. E., Lehtipalo, K., Kerminen, V.-M., and Kulmala, M.
Atmos. Chem. Phys., 13, 11391-11401, doi:10.5194/acp-13-11391-2013, 2013.

Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
Schobesberger, S. et al.
Proc. Natl. Acad. Sci., 110, 17223-17228, 2013.

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
Almeida, J. et al.
Nature. 502, 359-363, 2013.

Direct observations of atmospheric aerosol nucleation
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H.E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P.P, Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R.L., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kúrten, T., Johnston, M.V. Smith, J.N., Ehn, M., Mentel, T.F., Lehtinen, K.E.J., Laaksonen, A., Keminen, V.-M., Worsnop, D.
Science, 339, 943-946, 2013.

Measurement of the nucleation of atmospheric aerosol particles.
Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H.E., Lehtipalo, K., Dal Maso, M., Aalto, P.P, Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K.E.J., Laaksonen, A., Kerminen, V.-M.
Nature Protocols 7, 1651-1667, 2012.

Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
Riccobono, F., Rondo, L., Sipilä, M., Barmet, P., Curtius, J., Dommen, J., Ehn, M., Ehrhart, S., Kulmala, M., Kürten, A., Mikkilä, J., Petäjä, T., Weingartner, E., Baltensperger, U.
Atmos. Chem. Phys. Discuss., 12, 11351-11389, doi:10.5194/acpd-12-11351-2012, 2012.

Effects of amines on formation of sub-3 nm particles and their subsequent growth
Yu, H., McGraw, R., Lee, S.-H.
Geophys. Res. Lett. 39, L02807, 2012.

The role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
Kirkby, J. et al.
Nature, 476, 429-433, 2011.

The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences
Williams, J. et al.
Atmos. Chem. Phys., 11, 10599-10618, 2011.c

Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere
Benson, D. R., Yu, J. H., Markovich, A., Lee, S.-H.
Atmos. Chem. Phys., 11, 4755-4766, doi:10.5194/acp-11-4755-2011, 2011.

Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions
Brus, D., Neitola, K., Hyvärinen, A.-P., Petäjä, T., Vanhanen, J., Sipilä, M., Paasonen, P., Kulmala, M., Lihavainen, H.
Atmos. Chem. Phys., 11, 5277-5287, doi:10.5194/acp-11-5277-2011, 2011.

Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process
Berndt, T., Stratmann, F., Sipilä, M., Vanhanen, J., Petäjä, T., Mikkilä, J., Grüner, A., Spindler, G., Mauldin III, R.L., Curtius, J., Kulmala, M., Heintzenberg, J.
Atmos. Chem. Phys., 10, 7101-7116, 2010.

The role of sulfuric acid in atmospheric nucleation
Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin III, R. L., Hyvärinen, A.-P., Lihavainen, H., Kulmala, M.
Science, 327, 1243-1246, 2010.

Combustion, vehicle emissions and traffic

Snapshots of wintertime urban aerosol characteristics: Local sources emphasized in ultrafine particle number and lung deposited surface area
Lepistö, T., Barreira, L. M. F., Helin, A., Niemi, J. V., Kuittinen, N., Lintusaari, H., Silvonen, V., Markkula, L., Manninen, H. E., Timonen, H., Jalava, P., Saarikoski, S., Rönkkö, T.
Environ. Res., Vol 231, Part 1, 116068. 2023. https://doi.org/10.1016/j.envres.2023.116068

Particle number, mass, and black carbon emissions from fuel-operated auxiliary heaters in real vehicle use
Oikarinen, H,, Olin, , Martikainen, S., Leinonen, V., Mikkonen, S., Karjalainen, P.
Atmos Environ: X, Vol 16, 2022. https://doi.org/10.1016/j.aeaoa.2022.100189

Experimental and numerical analysis of fine particle and soot formation in a modern 100 MW pulverized biomass heating plant
Niemelä, N. P.,  Mylläri, F., Kuittinen, N., Aurela, M., Helin, A., Kuula, J., Teinilä, K., Nikka, M., Vainio, O., Arffman, A., Lintusaari, H., Timonen, H., Rönkkö, T., Joronen, T.
Combustion and Flame, Volume 240, 111960, 2022. https://doi.org/10.1016/j.combustflame.2021.111960

Reproducibility of the 10-nm Solid Particle Number Methodology for Light-Duty Vehicles Exhaust Measurements
Lähde, T, Giechaskiel, B., Martini, G., Woodburn, J., Bielaczyc, P., Schreiber, D., Huber, M., Dimopoulos Eggenschwiler, P., Fittavolini, C., Florio, S., Pellegrini, L., Schuster, N., Kirchner, U., Yamada, H., Momique, J.-C., Monier, R., Lai, Y., Murtonen, T., Vanhanen, J., Mamakos, A., Dardiotis, C., Otsuki, Y., Spielvogel, J.
Atmosphere. 13, no. 6, 872, 2022. https://doi.org/10.3390/atmos13060872

Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels
Olin, M., Patoulias, D., Kuuluvainen, H., Niemi, J. V., Rönkkö, T., Pandis, S. N., Riipinen, I., Dal Maso, M.
Atmos. Chem. Phys., 22, 1131–1148, 2022. https://doi.org/10.5194/acp-22-1131-2022.

Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison
Magdalena Okuljar, Heino Kuuluvaine, Jenni Kontkanen, Olga Garmash, Miska Olin, Jarkko V. Niemi, Hilkka Timonen,Juha Kangasluoma, Yee Jun Tham, Rima Baalbaki, Mikko Sipilä, Laura Salo, Henna Lintusaari, Harri Portin, Kimmo Teinilä, Minna Aurela, Miikka Dal Maso, Topi Rönkkö, Tuukka Petäjä, and Pauli Paasonen
Atmos. Chem. Phys., 21, 9931–9953, 2021 ,https://doi.org/10.5194/acp-21-9931-2021

Comprehensive emission characterisation of exhaust from alternative fuelled cars
P.Aakko-Saksa, P.Koponen, P.Roslund, J.Laurikko, N.-O. Nylund, P.Karjalainen, T.Rönkkö, H.Timonen
Atmospheric Environment Vol. 236, 1 September 2020, 117643, https://doi.org/10.1016/j.atmosenv.2020.117643

Emissions and radiative impacts of sub-10 nm particles from biofuel and fossil fuel cookstoves
Jathar, S. H., Sharma, N., Bilsback, K. R., Pierce, J. R., Vanhanen, J., Gordon, t. D., Volckens, J.
Aerosol Sci. Technol. Published online June 12, 2020. https://doi.org/10.1080/02786826.2020.1769837

Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions
Wihersaari, H., Pirjola, L., Karjalainen, P., Saukko, E., Kuuluvainen, H., Kulmala, K., Keskinen, J., Rönkkö, T.
Environ. Pollut. Vol. 265, Part B, 114948, 2020. https://doi.org/10.1016/j.envpol.2020.114948

Toxicological evaluation of exhaust emissions from light-duty vehicles using different fuel alternatives in sub-freezing conditions
Hakkarainen, H., Aakko-Saksa, P., Sainio, M., Ihantola, T., Rönkkö, T. J., Koponen, P., Rönkkö, T., Jalava, P. I.
Part Fibre Toxicol 17, 17 (2020). https://doi.org/10.1186/s12989-020-00348-0

Physical Characteristics of Particle Emissions from a Medium Speed Ship Engine Fueled with Natural Gas and Low-Sulfur Liquid Fuels
Alanen, J., Isotalo, M., Kuittinen, N. Simonen, P. Martikainen, S., Kuuluvainen, H., Honkanen, M., Lehtoranta, K., Nyyssönen, S., Vesala, H., Timonen, H., Aurela, M., Keskinen, J., Rönkkö, T.
Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b06460, 2020

Traffic-originated nanocluster emission exceeds H2SO4-driven photochemical new particle formation in an urban area
Olin, M., Kuuluvainen, H., Aurela, M., Kalliokoski, J., Kuittinen, N., Isotalo, M., Timonen, H. J., Niemi, J. V., Rönkkö, T., and Dal Maso, M.
Atmos. Chem. Phys., 20, 1–13, https://doi.org/10.5194/acp-20-1-2020, 2020.

Aerosol gas exchange system (AGES) for nanoparticle sampling at elevated temperatures: Modeling and experimental characterization
Bainschab, M., Martikainen, S., Keskinen, J., Bergmann, A., Karjalainen P.
Scientific Reports, 9, 17149, 2019. https://doi.org/10.1038/s41598-019-53113-5

Brake Wear Particle Emissions of a Passenger Car Measured on a Chassis Dynamometer
Mathissen, M., Grigoratos, T., Lahde, T., Vogt, R.
Atmosphere, 10(9), 556, 2019. https://doi.org/10.3390/atmos10090556

Dispersion of a Traffic Related Nanocluster Aerosol Near a Major Road
Kangasniemi, O., Kuuluvainen, H., Heikkilä, J., PirjolaL., Niemi, J. V., Timonen, H., Saarikoski, S., Rönkkö, T., Dal Maso, M.
Atmosphere 2019, 10, 309. doi:10.3390/atmos10060309

Particle emissions of Euro VI, EEV and retrofitted EEV city buses in real traffic
Järvinen, A., Timonen, H., Karjalainen, P., Bloss, M., Simonen, P., Saarikoski, S., Kuuluvainen, H., Kalliokoski, J., Dal Maso, M., Niemi, J. V., Keskinen, J., Rönkkö, T.
Environ. Pollut. Vol. 250, pp. 708-716, 2019. https://doi.org/10.1016/j.envpol.2019.04.033

Sub-2 nm particle measurement in high-temperature aerosol reactors: a review
Biswas, P., Wang, Y., Attoui, M.
Curr. Opin. Chem. Eng. vol. 21, pp. 60-66, 2018. https://doi.org/10.1016/j.coche.2018.03.004

Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon
Hietikko, R., Kuuluvainen, H., Harrison, R. M., Portin, H., Timonen, H., Niemi, J. V., Rönkkö, T.
Atmos. Environ. Available online 22 June 2018. https://doi.org/10.1016/j.atmosenv.2018.06.031

Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size
Karjalainen, P., Saari, S., Kuuluvainen, H., Kalliohaka, T., Taipale, A., Rönkkö, T.
Aerosol Sci. Technol. Published online July 19, 2017. http://dx.doi.org/10.1080/02786826.2017.1356904

Traffic is a major source of atmospheric nanocluster aerosol
Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski, S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., Dal Maso, M.
Proc. Natl. Acad. Sci. U.S.A. Published online July 3, 2017. doi:10.1073/pnas.1700830114

Investigation of vehicle exhaust sub-23 nm particle emissions
Giechaskiel, B., Vanhanen, J., Väkevä, M., Martini, G.
Aerosol Sci. Technol., available online January 25, 2017, http://dx.doi.org/10.1080/02786826.2017.1286291

Natural Gas Engine Emission Reduction by Catalysts
Lehtoranta, K., Murtonen, T., Vesala, H., Koponen, P., Alanen, J., Simonen, P., Rönkkö, T., Timonen, H., Saarikoski, S., Maunula, T., Kallinen, K., Korhonen, S.
Emiss. Control Sci. Technol., 2016.

The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors
Wang, Y., Kangasluoma, J., Attoui, M., Fang, J., Junninen, H., Kulmala, M., Petäjä, T., Biswas, P.
Combustion and Flame, vol 176, pp. 72-80, 2017. Available online 11 November 2016.

Emission of 1.3-10 nm airborne particles from brake materials
Nosko, O., Vanhanen, J., Olofsson, U.
Aerosol Sci. Technol. vol 51, issue 1, pp. 91-96, 2017. Published online 02 Nov 2016
.

The formation and physical properties of the particle emissions from a natural gas engine
Alanen, J., Saukko, E., Lehtoranta, K., Murtonen, T., Timonen, H., Hillamo, R., Karjalainen, P., Kuuluvainen, H., Harra, J., Keskinen, J., Rönkkö, T.
Fuel, vol 162, 155-161, 2015.

Instrumentation

Novel aerosol diluter – Size dependent characterization down to 1 nm particle size
Lampimäki, M., Baalbaki, R., Ahonen, L., Korhonen, F., Cai, R., Chan, T., Stolzenburg, D., Petäjä, T., Kangasluoma, J., Vanhanen, J., Lehtipalo, K.
J.Aerosol Sci., Available online 5 April 2023, 106180 https://doi.org/10.1016/j.jaerosci.2023.106180

Improved Counting Statistics of an Ultrafine DMPS System
Stolzenburg, D., Laurila, T., Aalto, P., Vanhanen, J., Petäjä, T., Kangasluoma, J.
Atmos Meas Tech Discuss, in review, 2022. https://doi.org/10.5194/amt-2022-270

Laboratory verification of a new high flow differential mobility particle sizer, and field measurements in Hyytiälä
Juha Kangasluoma, Lauri R. Ahonen, Tiia M.Laurila, Runlong Cai, Joonas Enroth, Stephany Buenrostro Mazon, Frans Korhonen, Pasi P. Aalto, Markku Kulmala, Michel Attoui, Tuukka Petäjä
J.Aerosol.Sci. Volume 124, October 2018, Pages 1-9 https://doi.org/10.1016/j.jaerosci.2018.06.009

Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions
Kangasluoma, J., Cai, R., Jiang, J., Deng, C., Stolzenburg, D., Ahonen, L. R., Chan, T., Fu, Y., Kim, C., Laurila, T. M., Zhou, Y., Dada, L., Sulo, J., Flagan, R. C., Kulmala, M., Petäjä, T., Lehtipalo, K.
J. Aerosol Sci. Vol 148, 105584, 2020. https://doi.org/10.1016/j.jaerosci.2020.105584

Precision characterization of three ultrafine condensation particle counters using singly charged salt clusters in the 1-4 nm size range generated by a bipolar electrospray source
Brilke, S., Resch, J., Leiminger, M., Steiner, G., Tauber, C., Wlasits, P. J., Winkler, P. M.
Aerosol Sci. Technol. Accepted author version published online December 23, 2019. https://doi.org/10.1080/02786826.2019.1708260

Review of sub-3 nm condensation particle counters, calibrations, and cluster generation methods
Kangasluoma, J., Attoui, M.
Aerosol Sci. Technol. Vol. 53, issue 11, pp. 1277-1310, 2019. Published online: 26 Aug 2019. https://doi.org/10.1080/02786826.2019.1654084

On the time response determination of condensation particle counters
Enroth, J., Kangasluoma, J., Korhonen, F., Hering, S., Picard, D., Lewis G., Attoui, M., Petäjä, T.
Aerosol Sci. Technol. Published online April 19, 2018. https://doi.org/10.1080/02786826.2018.1460458

Laboratory study of H2SO4/H2O nucleation using a new technique – a laminar co-flow tube
Trávníčková, T., Škrabalová, L., Havlica, J., Krejčí, P., Hrubý, J., Ždímal, V.
Tellus B Chem. Phys. Meteorol., 70:1, 1-11, 2018. DOI: 10.1080/16000889.2018.1446643

On the sources of uncertainty in the sub-3 nm particle concentration measurement
Kangasluoma, J., Kontkanen, J.
J. Aerosol Sci. Vol 112, pp. 34-51, 2017. https://doi.org/10.1016/j.jaerosci.2017.07.002

Production of neutral molecular clusters by controlled neutralization of mobility standards
Steiner, G., Franchin, A., Kangasluoma, J., Kerminen, V.-M., Kulmala, M., Petäjä, T.
Aerosol Sci. Technol. vol. 51, issue 8, pp. 946-955, 2017. Published online: 26 May 2017. DOI: 10.1080/02786826.2017.1328103

A DMA-train for precision measurement of sub-10 nm aerosol dynamics
Stolzenburg, D., Steiner, G., Winkler, P. M.
Atmos. Meas. Tech., 10, pp. 1639-1651, doi:10.5194/amt-10-1639-2017, 2017.

Heterogenous nucleation onto ions and neutralized ions: insights into sign-preference
Kangasluoma, J., Samodurov, A., Attoui, M., Franchin, A., Junninen, H., Korhonen, F., Kurtén, T., Vehkamäki, H., Sipilä, M., Lehtipalo, K., Worsnop, D. R., Petäjä, T., Kulmala, M.
J. Phys. Chem. C., 120 (13), 7444-7450, 2016.

Operation of the Airmodus A11 nanoCondensation Nucleus Counter at various inlet pressures, various operation temperatures and design of a new inlet system
Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen, M. Attoui, J. Mikkilä, K. Lehtipalo, J. Vanhanen, M. Kulmala, T. Petäjä.
Atmos. Meas. Tech., 9, 2977-2988, 2016
 (Atmos. Meas. Tech. Discuss., 8, 8483–8508, 2015)

Sizing of neutral sub 3 nm tungsten oxide clusters using Airmodus Particle Size Magnifier
Kangasluoma, J., Attoui, M., Junninen, H., Lehtipalo, K., Samodurov, A., Korhonen, F., Sarnela, N., Schmidt-Ott, A., Worsnop, D., Kulmala, M., Petäjä, T.
Journal of Aerosol Science, vol 87, 53-62, 2015.

Sub-3 nm particle size and composition dependent response of a nano-CPC battery
Kangasluoma, J., Kuang, C., Wimmer, D., Rissanen, M. P., Lehtipalo, K., Ehn, M., Worsnop, D. R., Wang, J., Kulmala, M., and Petäjä, T.
Atmos. Meas. Tech., 7, 689-700, 2014 (Atmos. Meas. Tech. Discuss., 6, 8855-8887, doi:10.5194/amtd-6-8855-2013, 2013.)

Performance of diethylene glycol-based particle counters in the sub-3 nm size range
Wimmer, D., Lehtipalo, K., Franchin, A., Kangasluoma, J., Kreissl, F., Kürten, A., Kupc, A., Metzger, A., Mikkilä, J., Petäjä, T., Riccobono, F., Vanhanen, J., Kulmala, M., and Curtius, J.
Atmos. Meas. Tech., 6, 1793-1804, doi:10.5194/amt-6-1793-2013, 2013.

Remarks on ion generation for CPC detection efficiency studies in sub 3 nm size range
Kangasluoma, J., Junninen, H., Lehtipalo, K. Mikkilä, J., Vanhanen, J., Attoui, M., Sipilä, M., Worsnop, D., Kulmala, M. and Petäjä, T.
Aerosol Sci. Technol., 5, 556- 563, 2013.

Indoor air, cleanroom, 3D-printer emissions and other

Black carbon toxicity dependence on particle coating: Measurements with a novel cell exposure method
Hakkarainen, H., Salo, L., Mikkonen, S., Saarikoski, S., Aurela, M., Teinilä, K., Ihalainen, M., Martikainen, S., Marjanen, P., Lepistö, T., Kuittinen, N., Saarnio, K., Aakko-Saksa, P., Pfeiffer, T. V., Timonen, H., Rönkkö, T., Jalava, P. I.
Sci. Total Environ, Vol 838, Part 4, 2022. https://doi.org/10.1016/j.scitotenv.2022.156543

Chemistry and human exposure implications of secondary organic aerosol production from indoor terpene ozonolysis
Rosales, C. M. F., Jiang, J., Lahib, A., Bottorff, B. P., Reidy, E. K., Kumar, V., Tasoglou, A., Huber, H., Dusanter, S., Tomas, A.,Boor, E.,Stevens, P.S.
Sci. Adv. Vol. 8, issue 8, 2022. DOI: 10.1126/sciadv.abj9156

The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: Overview of experimental methodology and preliminary results
Bekö, G., Wargocki, P., Wang, N., Li, M., Weschler, C. J., Morrison, G., Langer, S., Ernle, L., Licina, D., Yang, S., Zannoni, N., Williams, J.
Indoor air, 30, 6, 1213-122818, 2020. https://doi.org/10.1111/ina.12687

Emissions and radiative impacts of sub-10 nm particles from biofuel and fossil fuel cookstoves
Jathar, S. H., Sharma, N., Bilsback, K. R., Pierce, J. R., Vanhanen, J., Gordon, t. D., Volckens, J.
Aerosol Sci. Technol. Published online June 12, 2020. https://doi.org/10.1080/02786826.2020.1769837

Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures
Patel, S., Sankhyan, S., Boedicker, E. K., DeCarlo, P. F., Farmer, D. K., Goldstein, A. H., Katz, E. F., Nazaroff, W. W., Tian, Y., Vanhanen, J., Vance, M. E.
Environ. Sci. Technol. 54, 12, pp. 7107–7116, 2020. https://doi.org/10.1021/acs.est.0c00740

Nanocluster aerosol emissions of a 3D printer
Poikkimäki, M., Koljonen, V., Leskinen, N., Närhi, M., Kangasniemi, O., Kausiala, O., Dal Maso, M.
Environ. Sci. Technol. 2019. Accepted manuscript https://doi.org/10.1021/acs.est.9b05317

Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry
Farmer, D. K., Vance, M., E., Abbatt, J. P. D., Abeleira, A., Alves, M. R., Arata, C., Boedicker, E., Bourne, S., Cardoso-Saldaña, F., Corsi, R., DeCarlo, P. F., Goldstein, A. H., Grassian, V. H., Hildebrandt Ruiz, L., Jimenez, J. L., Kahan, T. F., Katz, E. F., Mattila, J. M., Nazaroff, W. W., Novoselac, A., O’Brien, R. E., Or, V. W., Patel, S., Sankhyan, S., Stevens, P.S., Tian, Y., Wade, M., Wang, C., Zhou, S., Zhou, Y.
Environ. Sci.: Processes Impacts, 21, 1280-1300, 2019. DOI: 10.1039/C9EM00228F

Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size
Karjalainen, P., Saari, S., Kuuluvainen, H., Kalliohaka, T., Taipale, A., Rönkkö, T.
Aerosol Sci. Technol. Published online July 19, 2017. http://dx.doi.org/10.1080/02786826.2017.1356904

Characterization of Emissions from a Desktop 3D Printer
Mendes, L., Kangas, A., Kukko, K., Mølgaard, B., Säämänen, A., Kanerva, T., Ituarte, I. F., Huhtiniemi, M., Stockmann-Juvala, H. Partanen, J., Hämeri, K., Eleftheriadis, K., Viitanen, A.-K.
J. Ind. Ecol., available online March 20, 2017. DOI: 10.1111/jiec.12569

First measurements of the number size distribution of 1 – 2 nm aerosol particles released from manufacturing process in a cleanroom environment
Ahonen, L. R., Kangasluoma, J., Lammi, J., Lehtipalo, K., Hämeri, K., Petäjä, T., Kulmala, M.
Aerosol Sci. Technol., available online February 14, 2017, http://dx.doi.org/10.1080/02786826.2017.1292347

Using a combined power law and log-normal distribution model to simulate particle formation and growth in a mobile aerosol chamber
Olin, M., Anttila, T., Dal Maso, M.
Atmos. Chem. Phys., 16, 7067-7090, doi:10.5194/acp-16-7067-2016, 2016.

A new clean air delivery rate test applied to five portable indoor air cleaners
Molgaard, B., Koivisto, A. J., Hussein, T. and Hämeri, K.
Aerosol Sci. Technol. 48, 409-417, 2014.

Start typing and press Enter to search