Airmodus > Publications
Peer-reviewed articles reporting measurements with Airmodus nCNC, PSM and CPC
New
Instrument characterization
On the time response determination of condensation particle counters
Enroth, J., Kangasluoma, J., Korhonen, F., Hering, S., Picard, D., Lewis G., Attoui, M., Petäjä, T.
Aerosol Sci. Technol. Published online April 19, 2018. https://doi.org/10.1080/02786826.2018.1460458
On the sources of uncertainty in the sub-3 nm particle concentration measurement
Kangasluoma, J., Kontkanen, J.
J. Aerosol Sci. Vol 112, pp. 34-51, 2017. https://doi.org/10.1016/j.jaerosci.2017.07.002
Operation of the Airmodus A11 nanoCondensation Nucleus Counter at various inlet pressures, various operation temperatures and design of a new inlet system
Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen, M. Attoui, J. Mikkilä, K. Lehtipalo, J. Vanhanen, M. Kulmala, T. Petäjä.
Atmos. Meas. Tech., 9, 2977-2988, 2016 (Atmos. Meas. Tech. Discuss., 8, 8483–8508, 2015)
Sizing of neutral sub 3 nm tungsten oxide clusters using Airmodus Particle Size Magnifier
Kangasluoma, J., Attoui, M., Junninen, H., Lehtipalo, K., Samodurov, A., Korhonen, F., Sarnela, N., Schmidt-Ott, A., Worsnop, D., Kulmala, M., Petäjä, T.
Journal of Aerosol Science, vol 87, 53-62, 2015.
Sub-3 nm particle size and composition dependent response of a nano-CPC battery
Kangasluoma, J., Kuang, C., Wimmer, D., Rissanen, M. P., Lehtipalo, K., Ehn, M., Worsnop, D. R., Wang, J., Kulmala, M., and Petäjä, T.
Atmos. Meas. Tech., 7, 689-700, 2014 (Atmos. Meas. Tech. Discuss., 6, 8855-8887, doi:10.5194/amtd-6-8855-2013, 2013.)
Performance of diethylene glycol-based particle counters in the sub-3 nm size range
Wimmer, D., Lehtipalo, K., Franchin, A., Kangasluoma, J., Kreissl, F., Kürten, A., Kupc, A., Metzger, A., Mikkilä, J., Petäjä, T., Riccobono, F., Vanhanen, J., Kulmala, M., and Curtius, J.
Atmos. Meas. Tech., 6, 1793-1804, doi:10.5194/amt-6-1793-2013, 2013.
Data analysis methods
Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier
Lehtipalo, K., Leppä, J., Kontkanen, J., Kangasluoma, J., Franchin, A., Wimmer, D., Schobesberger, S., Junninen, H., Petäjä, T., Sipilä, M., Mikkilä, J., Vanhanen, J., Worsnop, D. R. & Kulmala, M.
Boreal Env. Res. 19 (suppl. B) 2014.
Atmospheric
Variation of size-segregated particle number concentrations in wintertime Beijing
Zhou, Y., Dada, L., Liu, Y., Fu, Y., Kangasluoma, J., Chan, T., Yan, C., Chu, B., Daellenbach, K. R., Bianchi, F., Kokkonen, T., Liu, Y., Kujansuu, J., Kerminen, V.-M., Petäjä, T., Wang, L., Jiang, J., Kulmala, M.
Atmos. Chem. Phys., 20, 1201–1216, https://doi.org/10.5194/acp-20-1201-2020, 2020.
(Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-60, in review, 2019.)
Temperature Effects on Sulfuric Acid Aerosol Nucleation and Growth: Initial Results from the TANGENT Study
Tiszenkel, L., Stangl, C., Krasnomowitz, J., Ouyang, Q., Yu, h., Apsokardu, M. J., Johnston, M. V., Lee, S.-H.
Atmos. Chem. Phys., 19, 8915–8929, https://doi.org/10.5194/acp-19-8915-2019, 2019.
(Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-3, in review, 2019.)
Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
Lehtipalo, K. et al.
Sci. Adv. Vol. 4, no. 12, eaau5363, 2018, DOI: 10.1126/sciadv.aau5363
Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica
Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P., Duplissy, E.-M., Junninen, H., Kangasluoma, J., Manninen, H. E., Petäjä, T., Kulmala, M., Worsnop, D. R., Kirkby, J., Virkkula, A., Kerminen, V.-M.
Sci. Adv. Vol. 4, no. 11, eaat9744, 2018, DOI: 10.1126/sciadv.aat9744
Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
Stolzenburg, D. et al.
Proc. Natl. Acad. Sci. U.S.A. Published online August 28, 2018. https://doi.org/10.1073/pnas.1807604115
Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon
Hietikko, R., Kuuluvainen, H., Harrison, R. M., Portin, H., Timonen, H., Niemi, J. V., Rönkkö, T.
Atmos. Environ. Available online 22 June 2018. https://doi.org/10.1016/j.atmosenv.2018.06.031
Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity
Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Buenrostro Mazon, S., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petäjä, T., Worsnop, D. R., Kulmala, M. Wang, L.
Science, vol 361, issue 6399, pp. 278-281, 2018. DOI: 10.1126/science.aao4839
Driving parameters of biogenic volatile organic compounds and consequences on new particle formation observed at an Eastern Mediterranean background site
Debevec, C., Sauvage, S., Gros, V., Sellegri, K., Sciare, J., Pikridas, M., Stavroulas, I., Leonardis, T., Gaudion, V., Depelchin, L., Fronval, I., Sarda-Esteve, R., Baisnée, D., Bonsang, B., Savvides, C., Vrekoussis, M., Locoge, N.
Atmos. Chem. Phys., 18, 14297–14325, https://doi.org/10.5194/acp-18-14297-2018, 2018.
Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2018-297, in review, 2018.
Experimental study of H2SO4 aerosol nucleation at high ionization levels
Tomicic, M., Enghoff, M. B., Svensmark, H.
Atmos. Chem. Phys. 18, 5921-5930, 2018. https://doi.org/10.5194/acp-18-5921-2018
Vertical and horizontal distribution of regional new particle formation events in Madrid
Carnerero, C., Pérez, N., Reche, C., Ealo, M., Titos, G., Lee, H.-K., Eun, H.-R., Park, Y.-H., Dada, L., Paasonen, P., Kerminen, V.-M., Mantilla, E., Escudero, M., Gómez-Moreno, F. J., Alonso-Blanco, E., Coz, E., Saiz-Lopez, A., Temime-Roussel, B., Marchand, N., Beddows, D. C. S., Harrison, R. M., Petäjä, T., Kulmala, M., Ahn, K.-H., Alastuey, A., Querol, X.
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, 2018.
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-173, in review, 2018.
Laboratory study of H2SO4/H2O nucleation using a new technique – a laminar co-flow tube
Trávníčková, T., Škrabalová, L., Havlica, J., Krejčí, P., Hrubý, J., Ždímal, V.
Tellus B Chem. Phys. Meteorol., 70:1, 1-11, 2018. DOI: 10.1080/16000889.2018.1446643
The role of ions in new particle formation in the CLOUD chamber
Wagner, R. et al.
Atmos. Chem. Phys., 17, 15181-15197, https://doi.org/10.5194/acp-17-15181-2017, 2017.
Ground-based observation of clusters and nucleation-mode particles in the Amazon
Wimmer D., Mazon, S. B., Manninen, H. E., Kangasluoma, J., Franchin, A., Nieminen, T., Backmann, J., Wang, J., Kuang, C., Krejci, R., Brito, J., Goncalves Morais F., Martin, S. T., Artaxo, P., Kulmala, M., Kerminen, V.-M., Petäjä, T.
Atmos. Chem. Phys., 18, 13245–13264, https://doi.org/10.5194/acp-18-13245-2018, 2018.
(Direct observation of molecular clusters and nucleation mode particles in the Amazon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-782, in review, 2017.)
Traffic is a major source of atmospheric nanocluster aerosol
Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski, S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., Dal Maso, M.
Proc. Natl. Acad. Sci. U.S.A. Published online July 3, 2017. doi:10.1073/pnas.1700830114
Solar eclipse demonstrating the importance of photochemistry in new particle formation
Jokinen, T., Kontkanen, J., Lehtipalo, K., Manninen, H. E., Aalto, J., Porcar-Castell, A., Garmash, O., Nieminen, T., Ehn, M., Kangasluoma, J., Junninen, H., Levula, J., Duplissy, J., Ahonen, L. R., Rantala, P., Heikkinen, L., Yan, C., Sipilä, M., Worsnop, D. R., Bäck, J., Petäjä, T., Kerminen, V.-M., Kulmala, M.
Sci. Rep. 7 45707,2017. doi:10.1038/srep45707
Regional and local new particle formation events observed in the Yangtze River Delta region, China
Dai, L., Wang, H., Zhou, L., An, J., Tang, L., Lu, C., Yan, W., Liu, R., Kong, S., Chen, M., Lee, S., Yu, H.
J. Geophys. Res. Atmos., 122, 2017, doi:10.1002/2016JD026030.
Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles
Yu, H., Dai, L., Zhao, Y., Kanawade, V. P., Tripathi, S. N., Ge, X., Chen, M., Lee, S.
J. Geophys. Res. Atmos., vol. 122, issue 3, pp. 1919-1929, 2017.
Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities
Kontkanen, J., Lehtipalo, K., Ahonen, L., Kangasluoma, J., Manninen, H.E., Hakala, J., Rose, C., Sellegri, K., Xiao, S., Wang, L., Qi, X., Nie, W., Ding, A., Yu, H., Lee, S., Kerminen, V.-M., Petäjä, T., Kulmala, M.
Atmos. Chem. Phys., 17, pp. 2163-2187, 2017
The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water
Arquero, K. D., Gerber, R. B., Finlayson-Pitts, B. J.
Environ. Sci. Technol., available online January 24, 2017, DOI: 10.1021/acs.est.6b05056.
Isoprene suppression of new particle formation: Potential mechanisms and implications
Lee, S.-H., Uin, J., Guenther, A. B., de Gouw, J. A., Yu, F., Nadykto, A. B., Herb, J., Ng, N. L., Koss, A., Brune, W. H., Baumann, K., Kanawade, V. P., Keutsch, F. N., Nenes, A., Olsen, K., Goldstein, A., Ouyang, Q.
Journal of Geophysical Research: Atmospheres, vol 121, 14,621-14,625, 2016.
Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms
Sellegri, K., Pey, J., Rose, C., Culot, A., DeWitt, H. L., Mas, S., Schwier, A. N., Temime-Roussel, B., Charriere, B., Saiz-Lopez, A., Mahajan, A. S., Parin, D., Kukui, A., Sempere, R., D’Anna, B., Marchand, N.
Geophys. Res. Lett., 43, 6596-6603, 2016, doi:10.1002/2016GL069389.
New particle formation in the free troposphere: A question of chemistry and timing
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J, Kürten, A., Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M., Dommen, J., Baltensperger, U.
Science vol. 352, issue 6289, pp. 1109-1112, 2016
Ion-induced nucleation of pure biogenic particles
Kirkby et al.
Nature, vol 533, pp. 521-526, 2016
The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
Lehtipalo et al.
Nature Communications 7, 11594, 2016
Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China
Yu, H., Zhou, L., Dai, L., Shen, W., Zheng, J., Ma, Y., Chen, M.
Atmos. Chem. Phys., 16, 2641-2657, 2016.
A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations
Dal Maso, M., Liao, L., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Sipilä, M., Hakala, J., Lehtipalo, K., Ehn, M., Kerminen, V.-M., Kulmala, M., Worsnop, D., Mentel, T.
Atmos. Chem. Phys., 16, 1955-1970, doi:10.5194/acp-16-1955-2016, 2016.
High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign
Kontkanen, J., Järvinen, E., Manninen, H.E., Lehtipalo, K., Kangasluoma, J., Decesari, S., Gobbi, G.P., Laaksonen, A., Petäjä, T., Kulmala, M.
Atmos. Chem. Phys., 16, 1919-1935, 2016
Sulphuric acid and aerosol particle production in the vicinity of an oil refinery
Sarnela, N., Jokinen, T., Nieminen, T., Lehtipalo, K., Junninen, H., Kangasluoma, J., Hakala, J., Taipale, R., Schobesberger, S., Sipilä, M., Larnimaa, K., Westerholm, H., Heijari, J., Kerminen, V.-M., Petäjä, T., Kulmala, M.
Atmos. Env., vol 119, 156-166, 2015.
Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies
Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Mauldin R. L., Sarnela, N., Jokinen T., Lihavainen H., Kulmala, M.
Atmos. Chem. Phys., 15, 3429-3443, 2015. doi:10.5194/acp-15-3429-2015
Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere
Rose, C., Sellegri, K., Asmi, E., Hervo, M., Freney, E., Colomb, A., Junninen, H., Duplissy, J., Sipilä, M., Kontkanen, J., Lehtipalo, K., Kulmala, M.
Atmos. Chem. Phys., 15, 3413-3428, 2015.
New particle formation and growth in an isoprene-dominated ozark forest: from sub-5 nm to ccn-active sizes
Yu, H., Ortega, J., Smith, J. N., Guenther, A. B., Kanawade, V. P., You, Y., Liu, Y., Hosman, K., Karl, T., Seco, R., Geron, C., Pallardy, S. G., Gu, L., Mikkilä, J., Lee, S.-H.
Aerosol Sci. Technol. Vol. 48, Issue 12, pp. 1285-1298, 2014.
Effect of addition of four base compounds on sulphuric-acid–water new-particle formation: a laboratory study
Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Lihavainen, H., Kulmala, M.
Boreal Env. Res. 19 (suppl. B): 257–274, 2014.
A large source of low-volatility secondary organic aerosol
Ehn, M. et al.
Nature 506, 476-479, 2014.
Sub-3 nm particles observed at the coastal and continental sites in the United States
Yu, H. , Gannet Hallar , A., You , Y., Sedlacek , A., Springston , S., Kanawade , V.P., Lee , Y-N, Wang , J., Kuang , C., McGraw , R.L., McCubbin , I., Mikkila , J., and Lee, S.-H.
J. Geophys. Res. Atmos., 119, doi:10.1002/ 2013JD020841, 2014.
Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier
Lehtipalo, K., Leppä, J., Kontkanen, J., Kangasluoma, J., Franchin, A., Wimmer, D., Schobesberger, S., Junninen, H., Petäjä, T., Sipilä, M., Mikkilä, J., Vanhanen, J., Worsnop, D. R. & Kulmala, M.
Boreal Env. Res. 19 (suppl. B) 2014.
Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements
Kontkanen, J., Lehtinen, K. E. J., Nieminen, T., Manninen, H. E., Lehtipalo, K., Kerminen, V.-M., and Kulmala, M.
Atmos. Chem. Phys., 13, 11391-11401, doi:10.5194/acp-13-11391-2013, 2013.
Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
Schobesberger, S. et al.
Proc. Natl. Acad. Sci., 110, 17223-17228, 2013.
Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
Almeida, J. et al.
Nature. 502, 359-363, 2013.
Direct observations of atmospheric aerosol nucleation
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H.E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P.P, Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R.L., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kúrten, T., Johnston, M.V. Smith, J.N., Ehn, M., Mentel, T.F., Lehtinen, K.E.J., Laaksonen, A., Keminen, V.-M., Worsnop, D.
Science, 339, 943-946, 2013.
Measurement of the nucleation of atmospheric aerosol particles.
Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H.E., Lehtipalo, K., Dal Maso, M., Aalto, P.P, Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K.E.J., Laaksonen, A., Kerminen, V.-M.
Nature Protocols 7, 1651-1667, 2012.
Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
Riccobono, F., Rondo, L., Sipilä, M., Barmet, P., Curtius, J., Dommen, J., Ehn, M., Ehrhart, S., Kulmala, M., Kürten, A., Mikkilä, J., Petäjä, T., Weingartner, E., Baltensperger, U.
Atmos. Chem. Phys. Discuss., 12, 11351-11389, doi:10.5194/acpd-12-11351-2012, 2012.
Effects of amines on formation of sub-3 nm particles and their subsequent growth
Yu, H., McGraw, R., Lee, S.-H.
Geophys. Res. Lett. 39, L02807, 2012.
The role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
Kirkby, J. et al.
Nature, 476, 429-433, 2011.
The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences
Williams, J. et al.
Atmos. Chem. Phys., 11, 10599-10618, 2011.c
Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere
Benson, D. R., Yu, J. H., Markovich, A., Lee, S.-H.
Atmos. Chem. Phys., 11, 4755-4766, doi:10.5194/acp-11-4755-2011, 2011.
Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions
Brus, D., Neitola, K., Hyvärinen, A.-P., Petäjä, T., Vanhanen, J., Sipilä, M., Paasonen, P., Kulmala, M., Lihavainen, H.
Atmos. Chem. Phys., 11, 5277-5287, doi:10.5194/acp-11-5277-2011, 2011.
Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process
Berndt, T., Stratmann, F., Sipilä, M., Vanhanen, J., Petäjä, T., Mikkilä, J., Grüner, A., Spindler, G., Mauldin III, R.L., Curtius, J., Kulmala, M., Heintzenberg, J.
Atmos. Chem. Phys., 10, 7101-7116, 2010.
The role of sulfuric acid in atmospheric nucleation
Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin III, R. L., Hyvärinen, A.-P., Lihavainen, H., Kulmala, M.
Science, 327, 1243-1246, 2010.
Combustion, vehicle emissions and traffic
Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon
Hietikko, R., Kuuluvainen, H., Harrison, R. M., Portin, H., Timonen, H., Niemi, J. V., Rönkkö, T.
Atmos. Environ. Available online 22 June 2018. https://doi.org/10.1016/j.atmosenv.2018.06.031
Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size
Karjalainen, P., Saari, S., Kuuluvainen, H., Kalliohaka, T., Taipale, A., Rönkkö, T.
Aerosol Sci. Technol. Published online July 19, 2017. http://dx.doi.org/10.1080/02786826.2017.1356904
Traffic is a major source of atmospheric nanocluster aerosol
Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski, S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., Dal Maso, M.
Proc. Natl. Acad. Sci. U.S.A. Published online July 3, 2017. doi:10.1073/pnas.1700830114
Investigation of vehicle exhaust sub-23 nm particle emissions
Giechaskiel, B., Vanhanen, J., Väkevä, M., Martini, G.
Aerosol Sci. Technol., available online January 25, 2017, http://dx.doi.org/10.1080/02786826.2017.1286291
Natural Gas Engine Emission Reduction by Catalysts
Lehtoranta, K., Murtonen, T., Vesala, H., Koponen, P., Alanen, J., Simonen, P., Rönkkö, T., Timonen, H., Saarikoski, S., Maunula, T., Kallinen, K., Korhonen, S.
Emiss. Control Sci. Technol., 2016.
The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors
Wang, Y., Kangasluoma, J., Attoui, M., Fang, J., Junninen, H., Kulmala, M., Petäjä, T., Biswas, P.
Combustion and Flame, vol 176, pp. 72-80, 2017. Available online 11 November 2016.
Emission of 1.3-10 nm airborne particles from brake materials
Nosko, O., Vanhanen, J., Olofsson, U.
Aerosol Sci. Technol. vol 51, issue 1, pp. 91-96, 2017. Published online 02 Nov 2016.
The formation and physical properties of the particle emissions from a natural gas engine
Alanen, J., Saukko, E., Lehtoranta, K., Murtonen, T., Timonen, H., Hillamo, R., Karjalainen, P., Kuuluvainen, H., Harra, J., Keskinen, J., Rönkkö, T.
Fuel, vol 162, 155-161, 2015.
Instrumentation
On the time response determination of condensation particle counters
Enroth, J., Kangasluoma, J., Korhonen, F., Hering, S., Picard, D., Lewis G., Attoui, M., Petäjä, T.
Aerosol Sci. Technol. Published online April 19, 2018. https://doi.org/10.1080/02786826.2018.1460458
Laboratory study of H2SO4/H2O nucleation using a new technique – a laminar co-flow tube
Trávníčková, T., Škrabalová, L., Havlica, J., Krejčí, P., Hrubý, J., Ždímal, V.
Tellus B Chem. Phys. Meteorol., 70:1, 1-11, 2018. DOI: 10.1080/16000889.2018.1446643
On the sources of uncertainty in the sub-3 nm particle concentration measurement
Kangasluoma, J., Kontkanen, J.
J. Aerosol Sci. Vol 112, pp. 34-51, 2017. https://doi.org/10.1016/j.jaerosci.2017.07.002
Production of neutral molecular clusters by controlled neutralization of mobility standards
Steiner, G., Franchin, A., Kangasluoma, J., Kerminen, V.-M., Kulmala, M., Petäjä, T.
Aerosol Sci. Technol. vol. 51, issue 8, pp. 946-955, 2017. Published online: 26 May 2017. DOI: 10.1080/02786826.2017.1328103
A DMA-train for precision measurement of sub-10 nm aerosol dynamics
Stolzenburg, D., Steiner, G., Winkler, P. M.
Atmos. Meas. Tech., 10, pp. 1639-1651, doi:10.5194/amt-10-1639-2017, 2017.
Heterogenous nucleation onto ions and neutralized ions: insights into sign-preference
Kangasluoma, J., Samodurov, A., Attoui, M., Franchin, A., Junninen, H., Korhonen, F., Kurtén, T., Vehkamäki, H., Sipilä, M., Lehtipalo, K., Worsnop, D. R., Petäjä, T., Kulmala, M.
J. Phys. Chem. C., 120 (13), 7444-7450, 2016.
Operation of the Airmodus A11 nanoCondensation Nucleus Counter at various inlet pressures, various operation temperatures and design of a new inlet system
Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen, M. Attoui, J. Mikkilä, K. Lehtipalo, J. Vanhanen, M. Kulmala, T. Petäjä.
Atmos. Meas. Tech., 9, 2977-2988, 2016 (Atmos. Meas. Tech. Discuss., 8, 8483–8508, 2015)
Sizing of neutral sub 3 nm tungsten oxide clusters using Airmodus Particle Size Magnifier
Kangasluoma, J., Attoui, M., Junninen, H., Lehtipalo, K., Samodurov, A., Korhonen, F., Sarnela, N., Schmidt-Ott, A., Worsnop, D., Kulmala, M., Petäjä, T.
Journal of Aerosol Science, vol 87, 53-62, 2015.
Sub-3 nm particle size and composition dependent response of a nano-CPC battery
Kangasluoma, J., Kuang, C., Wimmer, D., Rissanen, M. P., Lehtipalo, K., Ehn, M., Worsnop, D. R., Wang, J., Kulmala, M., and Petäjä, T.
Atmos. Meas. Tech., 7, 689-700, 2014 (Atmos. Meas. Tech. Discuss., 6, 8855-8887, doi:10.5194/amtd-6-8855-2013, 2013.)
Performance of diethylene glycol-based particle counters in the sub-3 nm size range
Wimmer, D., Lehtipalo, K., Franchin, A., Kangasluoma, J., Kreissl, F., Kürten, A., Kupc, A., Metzger, A., Mikkilä, J., Petäjä, T., Riccobono, F., Vanhanen, J., Kulmala, M., and Curtius, J.
Atmos. Meas. Tech., 6, 1793-1804, doi:10.5194/amt-6-1793-2013, 2013.
Remarks on ion generation for CPC detection efficiency studies in sub 3 nm size range
Kangasluoma, J., Junninen, H., Lehtipalo, K. Mikkilä, J., Vanhanen, J., Attoui, M., Sipilä, M., Worsnop, D., Kulmala, M. and Petäjä, T.
Aerosol Sci. Technol., 5, 556- 563, 2013.
Indoor air, cleanroom, 3D-printer emissions and other
Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size
Karjalainen, P., Saari, S., Kuuluvainen, H., Kalliohaka, T., Taipale, A., Rönkkö, T.
Aerosol Sci. Technol. Published online July 19, 2017. http://dx.doi.org/10.1080/02786826.2017.1356904
Characterization of Emissions from a Desktop 3D Printer
Mendes, L., Kangas, A., Kukko, K., Mølgaard, B., Säämänen, A., Kanerva, T., Ituarte, I. F., Huhtiniemi, M., Stockmann-Juvala, H. Partanen, J., Hämeri, K., Eleftheriadis, K., Viitanen, A.-K.
J. Ind. Ecol., available online March 20, 2017. DOI: 10.1111/jiec.12569
First measurements of the number size distribution of 1 – 2 nm aerosol particles released from manufacturing process in a cleanroom environment
Ahonen, L. R., Kangasluoma, J., Lammi, J., Lehtipalo, K., Hämeri, K., Petäjä, T., Kulmala, M.
Aerosol Sci. Technol., available online February 14, 2017, http://dx.doi.org/10.1080/02786826.2017.1292347
Using a combined power law and log-normal distribution model to simulate particle formation and growth in a mobile aerosol chamber
Olin, M., Anttila, T., Dal Maso, M.
Atmos. Chem. Phys., 16, 7067-7090, doi:10.5194/acp-16-7067-2016, 2016.
A new clean air delivery rate test applied to five portable indoor air cleaners
Molgaard, B., Koivisto, A. J., Hussein, T. and Hämeri, K.
Aerosol Sci. Technol. 48, 409-417, 2014.